N-ESP32-AD9834C

端子表

下記のスイッチとは、スイッチボードのJ1コネクタのピン番号です。

基板端子名	内容	基板端子名	内容
3V3	電源(3V~3.3V)	GND	電源の GND
VP	未接続	23	未接続
VN	未接続	22	LCD への SCL 信号
34	未接続	21	LCD への SDA 信号
35	未接続	19	未接続
32	スイッチ 3	18	未接続
33	スイッチ 4	5	未接続
25	未接続	17	スイッチ 9
26	スイッチ 5	16	スイッチ 10
27	スイッチ 6	4	スイッチ 2
GND	スイッチ 8	2	スイッチ 1
OA	IOUT (出力)	OB	IOUB (出力)
GND	GND	GND	GND

1.電源

電源は、3V~3.3Vを3V3端子と、GND端子へ接続してください。

2.出力(DC 成分が出力されています)

出力は、OA と OB 端子にでています。

この出力は、240Ω で 3.3V にプルアップされて、直接端子に出ています。(回路図を参照) そのため、常に DC3.3V が端子に出力されています。

もし、接続先の入力に DC 電圧を印加できない場合は、途中に DC カットコンデンサを 入れてください。 使用する周波数が高い(100KHz 以上)の場合は、0.1uF から 0.01uF が適当です。 使用する周波数が低い(100KHz 以下)の場合は、10uF から 100uF が適当です。

3.LCD の接続

LCD は付属しませんので、別途、秋月電子さんから購入してください。 https://akizukidenshi.com/catalog/g/gK-08896/

LCD 基板の、プルアップ抵抗をON にしてください。(はんだジャンパー)

LCD のマニュアルの最後のページに、方法が記載されています。

SCL, SDA, GND, +3.3V を接続します。 上記端子表を、参照してください。

4.LCD 表示

R	SW4の操作によって、RとTが切り替わります。	
+	RIT の±	
上段	発振周波数	
(010.000.000)		
下段	RIT の移動量	
(000.000.000)		
左下 (00)	チャンネル番号	

5.ボタン操作

S1	左へカーソル移動
S2	右へカーソル移動
S3	入力フィールド移動 周波数、RIT、チャンネル、レベルの各項目を、順番に移動します。
S4	RIT の ON/OFF RIT のが ON になると、RIT 周波数の左側に" * "マークが付きます。 ON の場合、発振周波数に RIT の値が加算(-ならば減算)されます。
S6 + S1	チャンネル ライト 周波数、RIT、オフセット、レベルなどの情報を、チャンネルに記憶します。 あらかじめ、チャンネル番号を、設定したいチャンネルに変更しておいてく ださい。 値がライトされたチャンネルには、左側に"*"マークが付きます。 ※チャンネル0番が設定されている場合は、起動時に0番の値でスタートしま す。
S6 + S2	0 クリア カーソルがある入力フィードを、0 にします。
S6 + S3	チャンネル コール 現在のチャンネル番号の情報を読み出します。
S6 + S4	エンコーダ ロック エンコーダを回しても、反応しなくなります。

6.初期化

SW6を押したまま、電源 ON を行うと、EEPROM に記憶されているデータが初期化されます。 LCD に"INIT OK"と表示されるまで、SW6 を押し続けます。 チャンネルデータ、オフセットなどは、初期値(0)になります。

7.表示設定(オフセット 逓倍 逆方向)

通常、なにも設定しない初期状態では、表示周波数と発振周波数は一致しています。 オフセット、逓倍、逆方向の設定することで、発振周波数と表示の関係を変えることができま す。

表示周波数 = 発振周波数 * 逓倍 + オフセット 発振周波数 : 実際に出力される周波数 逓倍 : 外部で逓倍する場合の倍率 オフセット : 表示オフセット

例えば、逓倍が3倍、オフセットが10MHzの場合、発振周波数が100MHzならば 100*3+10=310 MHz

がLCDの上段に表示されます。

RIT に値を設定してから、各ボタンを押します。

S6 + S3 + S1	オフセット設定	
S6 + S3 + S2	逓倍設定	
S6 + S3 + S2 + S1	逆方向発振の基準点	

設定には、RIT に設定した値が使われます。

(例)

RIT = 10MHz

に設定した状態で、S6+S3+S1 を押すと、オフセットが10MHzにセットされます。

逆方向発振

逆方向発振は、表示とは逆の方向に発振が動きます。 例えば、逆方向発振の基準点を100MHzに設定した場合、 表示が110MHzになった場合、発振は90MHzになっています。

8.アプリのインストール

Android 用のアプリのインストールは、Google Play ストアからインストールしてください。 両端に、ダブルコーテーションを付け "n-dds-ble" で、検索してください。 ダブルコーテーションがないと、関係のないアプリが一杯でてきます。

アプリ起動時に、「位置情報」の使用許可を与えてください。

アプリ自体では、「位置情報」を使用していませんが、周辺の Bluetooth を探すときに、 システムが「位置情報」を使用しています。

n-esp32-dds-ad9834

Reference	Quantity	Value
C1 C2 C4 C5 C6 C7 C8 C9	8	0.1uF
C3	1	22uF
J1	1	Conn_02x03_Odd_Even
J2	1	Conn_02x05_Odd_Even
J3 J4	2	Conn_01x13
R2 R3	2	240
R4 R1	2	6.8K
U1	1	ESP32-WROOM-32
U2	1	AD9834
Y1	1	75MHz
基板	1	

